import numpy as np
import random
liste = ['Felix', 'Sascha', 'gloria', 'Robin', 'Romy','Joel']
np.random.shuffle(liste)
liste
['Romy', 'Sascha', 'gloria', 'Robin', 'Felix', 'Joel']
import pandas as pd
import matplotlib.pyplot as plt
mem = pd.read_csv("mem.tsv",sep="\t")
mem.head()
hostname | interval | timestamp | kbmemfree | kbavail | kbmemused | %memused | kbbuffers | kbcached | kbcommit | %commit | kbactive | kbinact | kbdirty | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | gaia2 | 60 | 2024-03-01 09:45:27 UTC | 137037152 | 230075116 | 31003076 | 11.74 | 636204 | 89877820 | 171802324 | 41.85 | 20851076 | 97457904 | 184 |
1 | gaia2 | 60 | 2024-03-01 09:46:27 UTC | 138041912 | 231080832 | 30002400 | 11.36 | 636328 | 89874808 | 161479612 | 39.33 | 20894252 | 96386512 | 576 |
2 | gaia2 | 60 | 2024-03-01 09:47:27 UTC | 138006124 | 231045812 | 30024476 | 11.37 | 636420 | 89888768 | 162125444 | 39.49 | 20894752 | 96423336 | 120 |
3 | gaia2 | 60 | 2024-03-01 09:48:27 UTC | 137958872 | 230999448 | 30071096 | 11.39 | 636504 | 89888952 | 171039472 | 41.66 | 20894832 | 96508840 | 3272 |
4 | gaia2 | 60 | 2024-03-01 09:49:27 UTC | 137909188 | 230950336 | 30120168 | 11.41 | 636592 | 89888964 | 171062608 | 41.67 | 20894932 | 96569740 | 212 |
cpu = pd.read_csv("cpu.tsv",sep="\t")
cpu.head()
hostname | interval | timestamp | CPU | %user | %nice | %system | %iowait | %steal | %idle | |
---|---|---|---|---|---|---|---|---|---|---|
0 | gaia2 | 60 | 2024-03-01 09:45:27 UTC | -1 | 1.05 | 0.0 | 2.62 | 0.09 | 0.0 | 96.23 |
1 | gaia2 | 60 | 2024-03-01 09:46:27 UTC | -1 | 1.33 | 0.0 | 2.92 | 0.16 | 0.0 | 95.60 |
2 | gaia2 | 60 | 2024-03-01 09:47:27 UTC | -1 | 1.47 | 0.0 | 2.98 | 0.16 | 0.0 | 95.38 |
3 | gaia2 | 60 | 2024-03-01 09:48:27 UTC | -1 | 1.65 | 0.0 | 3.25 | 0.09 | 0.0 | 95.01 |
4 | gaia2 | 60 | 2024-03-01 09:49:27 UTC | -1 | 1.05 | 0.0 | 2.42 | 0.06 | 0.0 | 96.47 |
sorted = cpu.sort_values(["%user", "hostname"], ascending = [False, False])
sorted.head()
hostname | interval | timestamp | CPU | %user | %nice | %system | %iowait | %steal | %idle | |
---|---|---|---|---|---|---|---|---|---|---|
305885 | uranus2 | 60 | 2024-03-01 09:55:14 UTC | -1 | 76.90 | 0.0 | 0.08 | 0.00 | 0.0 | 23.02 |
309344 | uranus2 | 60 | 2024-03-03 19:34:54 UTC | -1 | 68.65 | 0.0 | 0.09 | 0.08 | 0.0 | 31.18 |
305886 | uranus2 | 60 | 2024-03-01 09:56:14 UTC | -1 | 65.68 | 0.0 | 0.10 | 0.00 | 0.0 | 34.22 |
305887 | uranus2 | 60 | 2024-03-01 09:57:14 UTC | -1 | 56.79 | 0.0 | 0.09 | 0.00 | 0.0 | 43.12 |
305888 | uranus2 | 60 | 2024-03-01 09:58:14 UTC | -1 | 54.70 | 0.0 | 0.10 | 0.00 | 0.0 | 45.21 |
uranus2 = cpu[cpu["hostname"]=="uranus2"]
uranus2.tail()
hostname | interval | timestamp | CPU | %user | %nice | %system | %iowait | %steal | %idle | |
---|---|---|---|---|---|---|---|---|---|---|
346225 | uranus2 | 60 | 2024-03-29 10:16:05 UTC | -1 | 0.03 | 0.0 | 0.01 | 0.0 | 0.0 | 99.97 |
346226 | uranus2 | 60 | 2024-03-29 10:17:05 UTC | -1 | 0.01 | 0.0 | 0.01 | 0.0 | 0.0 | 99.98 |
346227 | uranus2 | 60 | 2024-03-29 10:18:05 UTC | -1 | 0.01 | 0.0 | 0.01 | 0.0 | 0.0 | 99.98 |
346228 | uranus2 | 60 | 2024-03-29 10:19:05 UTC | -1 | 0.01 | 0.0 | 0.01 | 0.0 | 0.0 | 99.98 |
346229 | uranus2 | 60 | 2024-03-29 10:20:05 UTC | -1 | 0.01 | 0.0 | 0.00 | 0.0 | 0.0 | 99.98 |
mean_usage = uranus2["%user"].mean()
print(mean_usage)
0.44869946709629444
list_hostnames = np.unique(cpu["hostname"])
print(list_hostnames)
['gaia2' 'gaia3' 'gaia4' 'gaia5' 'jupiter' 'jupiter4' 'jupiter5' 'saturn2' 'uranus2']
cpu[cpu["hostname"]=='gaia2']["%user"].mean()
1.0927676061688063
usage_list=[]
for hostname in list_hostnames:
usage_list.append(cpu[cpu["hostname"]==hostname]["%user"].mean())
print(usage_list)
[1.0927676061688063, 1.2852238355268124, 0.8303516677155444, 4.063075819362634, 0.2556233854520734, 0.06360919229730251, 0.1664052271374727, 0.12612141192801546, 0.44869946709629444]
plt.scatter(list_hostnames, usage_list)
plt.ylabel("Mean usage [%]")
plt.title("Mean usage percentage per host")
Text(0.5, 1.0, 'Mean usage percentage per host')